Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 10: 1287449, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877021

RESUMEN

When seriously ill patients have exhausted all treatment options available as part of usual care, the use of investigational agents may be warranted. Food and Drug Administration's (FDA) Expanded Access (EA) pathway provides a mechanism for these patient's physicians to pursue use of an investigational agent outside of a clinical trial when trial enrollment is not a feasible option. Though FDA has recently implemented processes to significantly streamline the regulatory portion of the process, the overall pathway has several time-consuming components including communication with the pharmaceutical company and the associated institutional requirements for EA use (contracting, Institutional Review Board [IRB], pharmacy, billing). Here, we present our experience building infrastructure at the Vanderbilt University Medical Center (VUMC) to support physicians and patients in pursuing EA, called the Access to Investigational Medicines (AIM) Platform, aligning the needs and responsibilities of institutional stakeholders and streamlining to ensure efficiency and regulatory compliance. Since its launch, the AIM team has experienced steady growth, supporting 40 EA cases for drugs/biologics, including both single patient cases and intermediate-size EA protocols in the emergent and non-emergent setting. As the EA pathway is a complex process that requires expert facilitation, we propose prioritizing EA support infrastructure at major academic medical centers as an essential regulatory knowledge function.

2.
JAMA ; 329(14): 1170-1182, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37039791

RESUMEN

Importance: Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective: To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants: Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions: A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures: The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results: Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance: In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04924660.


Asunto(s)
COVID-19 , Receptor de Angiotensina Tipo 1 , Sistema Renina-Angiotensina , Vasodilatadores , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Angiotensina II/metabolismo , Angiotensinas/administración & dosificación , Angiotensinas/uso terapéutico , COVID-19/complicaciones , COVID-19/mortalidad , COVID-19/fisiopatología , COVID-19/terapia , Hipoxia/tratamiento farmacológico , Hipoxia/etiología , Hipoxia/mortalidad , Infusiones Intravenosas , Ligandos , Oligopéptidos/administración & dosificación , Oligopéptidos/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Receptor de Angiotensina Tipo 1/administración & dosificación , Receptor de Angiotensina Tipo 1/uso terapéutico , Sistema Renina-Angiotensina/efectos de los fármacos , SARS-CoV-2 , Vasodilatadores/administración & dosificación , Vasodilatadores/uso terapéutico
3.
Chest ; 162(4): 804-814, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35504307

RESUMEN

Mortality historically has been the primary outcome of choice for acute and critical care clinical trials. However, undue reliance on mortality can limit the scope of trials that can be performed. Large sample sizes are usually needed for trials powered for a mortality outcome, and focusing solely on mortality fails to recognize the importance that reducing morbidity can have on patients' lives. The COVID-19 pandemic has highlighted the need for rapid, efficient trials to rigorously evaluate new therapies for hospitalized patients with acute lung injury. Oxygen-free days (OFDs) is a novel outcome for clinical trials that is a composite of mortality and duration of new supplemental oxygen use. It is designed to characterize recovery from acute lung injury in populations with a high prevalence of new hypoxemia and supplemental oxygen use. In these populations, OFDs captures two patient-centered consequences of acute lung injury: mortality and hypoxemic lung dysfunction. Power to detect differences in OFDs typically is greater than that for other clinical trial outcomes, such as mortality and ventilator-free days. OFDs is the primary outcome for the Fourth Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV-4) Host Tissue platform, which evaluates novel therapies targeting the host response to COVID-19 among adults hospitalized with COVID-19 and new hypoxemia. This article outlines the rationale for use of OFDs as an outcome for clinical trials, proposes a standardized method for defining and analyzing OFDs, and provides a framework for sample size calculations using the OFD outcome.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Adulto , COVID-19/terapia , Ensayos Clínicos como Asunto , Humanos , Hipoxia/etiología , Hipoxia/terapia , Evaluación de Resultado en la Atención de Salud , Oxígeno , Pandemias
4.
Drug Saf ; 43(6): 567-582, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32112228

RESUMEN

INTRODUCTION: When a new drug or biologic product enters the market, its full spectrum of side effects is not yet fully understood, as use in the real world often uncovers nuances not suggested within the relatively narrow confines of preapproval preclinical and trial work. OBJECTIVE: We describe a new, phenome-wide association study (PheWAS)- and evidence-based approach for detection of potential adverse drug effects. METHODS: We leveraged our established platform, which integrates human genetic data with associated phenotypes in electronic health records from 29,722 patients of European ancestry, to identify gene-phenotype associations that may represent known safety issues. We examined PheWAS data and the published literature for 16 genes, each of which encodes a protein targeted by at least one drug or biologic product. RESULTS: Initial data demonstrated that our novel approach (safety ascertainment using PheWAS [SA-PheWAS]) can replicate published safety information across multiple drug classes, with validated findings for 13 of 16 gene-drug class pairs. CONCLUSIONS: By connecting and integrating in vivo and in silico data, SA-PheWAS offers an opportunity to supplement current methods for predicting or confirming safety signals associated with therapeutic agents.


Asunto(s)
Aprobación de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Registros Electrónicos de Salud , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo , Población Blanca
5.
Cancer Res ; 78(7): 1845-1858, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29358172

RESUMEN

Small-molecule inhibitors of the mTORC2 kinase (torkinibs) have shown efficacy in early clinical trials. However, the torkinibs under study also inhibit the other mTOR-containing complex mTORC1. While mTORC1/mTORC2 combined inhibition may be beneficial in cancer cells, recent reports describe compensatory cell survival upon mTORC1 inhibition due to loss of negative feedback on PI3K, increased autophagy, and increased macropinocytosis. Genetic models suggest that selective mTORC2 inhibition would be effective in breast cancers, but the lack of selective small-molecule inhibitors of mTORC2 have precluded testing of this hypothesis to date. Here we report the engineering of a nanoparticle-based RNAi therapeutic that can effectively silence the mTORC2 obligate cofactor Rictor. Nanoparticle-based Rictor ablation in HER2-amplified breast tumors was achieved following intratumoral and intravenous delivery, decreasing Akt phosphorylation and increasing tumor cell killing. Selective mTORC2 inhibition in vivo, combined with the HER2 inhibitor lapatinib, decreased the growth of HER2-amplified breast cancers to a greater extent than either agent alone, suggesting that mTORC2 promotes lapatinib resistance, but is overcome by mTORC2 inhibition. Importantly, selective mTORC2 inhibition was effective in a triple-negative breast cancer (TNBC) model, decreasing Akt phosphorylation and tumor growth, consistent with our findings that RICTOR mRNA correlates with worse outcome in patients with basal-like TNBC. Together, our results offer preclinical validation of a novel RNAi delivery platform for therapeutic gene ablation in breast cancer, and they show that mTORC2-selective targeting is feasible and efficacious in this disease setting.Significance: This study describes a nanomedicine to effectively inhibit the growth regulatory kinase mTORC2 in a preclinical model of breast cancer, targeting an important pathogenic enzyme in that setting that has been undruggable to date. Cancer Res; 78(7); 1845-58. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Lapatinib/farmacología , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas , ARN Interferente Pequeño/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Receptor ErbB-2/metabolismo , Neoplasias de la Mama Triple Negativas/patología
6.
Nat Commun ; 8(1): 1728, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29170413

RESUMEN

Intratumoral phenotypic heterogeneity has been described in many tumor types, where it can contribute to drug resistance and disease recurrence. We analyzed ductal and neuroendocrine markers in pancreatic ductal adenocarcinoma, revealing heterogeneous expression of the neuroendocrine marker Synaptophysin within ductal lesions. Higher percentages of Cytokeratin-Synaptophysin dual positive tumor cells correlate with shortened disease-free survival. We observe similar lineage marker heterogeneity in mouse models of pancreatic ductal adenocarcinoma, where lineage tracing indicates that Cytokeratin-Synaptophysin dual positive cells arise from the exocrine compartment. Mechanistically, MYC binding is enriched at neuroendocrine genes in mouse tumor cells and loss of MYC reduces ductal-neuroendocrine lineage heterogeneity, while deregulated MYC expression in KRAS mutant mice increases this phenotype. Neuroendocrine marker expression is associated with chemoresistance and reducing MYC levels decreases gemcitabine-induced neuroendocrine marker expression and increases chemosensitivity. Altogether, we demonstrate that MYC facilitates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma, contributing to poor survival and chemoresistance.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Antineoplásicos/uso terapéutico , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Diferenciación Celular , Línea Celular Tumoral , Linaje de la Célula , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Xenoinjertos , Humanos , Queratinas/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Trasplante de Neoplasias , Células Neuroendocrinas/metabolismo , Células Neuroendocrinas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Pronóstico , Sinaptofisina/metabolismo , Gemcitabina
7.
Breast Cancer Res ; 19(1): 105, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886748

RESUMEN

BACKGROUND: During pregnancy, as the mammary gland prepares for synthesis and delivery of milk to newborns, a luminal mammary epithelial cell (MEC) subpopulation proliferates rapidly in response to systemic hormonal cues that activate STAT5A. While the receptor tyrosine kinase ErbB4 is required for STAT5A activation in MECs during pregnancy, it is unclear how ErbB3, a heterodimeric partner of ErbB4 and activator of phosphatidyl inositol-3 kinase (PI3K) signaling, contributes to lactogenic expansion of the mammary gland. METHODS: We assessed mRNA expression levels by expression microarray of mouse mammary glands harvested throughout pregnancy and lactation. To study the role of ErbB3 in mammary gland lactogenesis, we used transgenic mice expressing WAP-driven Cre recombinase to generate a mouse model in which conditional ErbB3 ablation occurred specifically in alveolar mammary epithelial cells (aMECs). RESULTS: Profiling of RNA from mouse MECs isolated throughout pregnancy revealed robust Erbb3 induction during mid-to-late pregnancy, a time point when aMECs proliferate rapidly and undergo differentiation to support milk production. Litters nursed by ErbB3 KO dams weighed significantly less when compared to litters nursed by ErbB3 WT dams. Further analysis revealed substantially reduced epithelial content, decreased aMEC proliferation, and increased aMEC cell death during late pregnancy. Consistent with the potent ability of ErbB3 to activate cell survival through the PI3K/Akt pathway, we found impaired Akt phosphorylation in ErbB3 KO samples, as well as impaired expression of STAT5A, a master regulator of lactogenesis. Constitutively active Akt rescued cell survival in ErbB3-depleted aMECs, but failed to restore STAT5A expression or activity. Interestingly, defects in growth and survival of ErbB3 KO aMECs as well as Akt phosphorylation, STAT5A activity, and expression of milk-encoding genes observed in ErbB3 KO MECs progressively improved between late pregnancy and lactation day 5. We found a compensatory upregulation of ErbB4 activity in ErbB3 KO mammary glands. Enforced ErbB4 expression alleviated the consequences of ErbB3 ablation in aMECs, while combined ablation of both ErbB3 and ErbB4 exaggerated the phenotype. CONCLUSIONS: These studies demonstrate that ErbB3, like ErbB4, enhances lactogenic expansion and differentiation of the mammary gland during pregnancy, through activation of Akt and STAT5A, two targets crucial for lactation.


Asunto(s)
Mama/citología , Mama/metabolismo , Diferenciación Celular/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Lactancia/genética , Receptor ErbB-3/genética , Alelos , Animales , Proliferación Celular/genética , Supervivencia Celular/genética , Femenino , Técnicas de Inactivación de Genes , Inmunohistoquímica , Ratones , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...